espvban/ESPIDFNEW/managed_components/espressif__esp-dsp/modules/matrix/include/mat.h

672 lines
18 KiB
C
Raw Normal View History

2024-08-29 21:38:48 +02:00
// Copyright 2018-2023 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef _dspm_mat_h_
#define _dspm_mat_h_
#include <iostream>
/**
* @brief DSP matrix namespace
*
* DSP library matrix namespace.
*/
namespace dspm {
/**
* @brief Matrix
*
* The Mat class provides basic matrix operations on single-precision floating point values.
*/
class Mat {
public:
int rows; /*!< Amount of rows*/
int cols; /*!< Amount of columns*/
int stride; /*!< Stride = (number of elements in a row) + padding*/
int padding; /*!< Padding between 2 rows*/
float *data; /*!< Buffer with matrix data*/
int length; /*!< Total amount of data in data array*/
static float abs_tol; /*!< Max acceptable absolute tolerance*/
bool ext_buff; /*!< Flag indicates that matrix use external buffer*/
bool sub_matrix; /*!< Flag indicates that matrix is a subset of another matrix*/
/**
* @brief Rectangular area
*
* The Rect is used for creating regions of interest ROI(s). The ROI is then used as a sub-matrix
*/
struct Rect {
int x; /*!< x starting position (start col) of the rectangular area*/
int y; /*!< y starting position (start row) of the rectangular area*/
int width; /*!< width (number of cols) of the rectangular area*/
int height; /*!< height (number of rows) of the rectangular area*/
/**
* @brief Constructor with initialization to 0
*
* @param[in] x: x starting position (start col) of the rectangular area
* @param[in] y: y starting position (start row) of the rectangular area
* @param[in] width: width (number of cols) of the rectangular area
* @param[in] height: height (number of rows) of the rectangular area
*/
Rect(int x = 0, int y = 0, int width = 0, int height = 0);
/**
* @brief Resize rect area
*
* @param[in] x: x starting position (start col) of the new rectangular area
* @param[in] y: y starting position (start row) of the new rectangular area
* @param[in] width: width (number of cols) of the new rectangular area
* @param[in] height: height (number of rows) of the new rectangular area
*/
void resizeRect(int x, int y, int width, int height);
/**
* @brief Get amount of elements in the rect area
*/
int areaRect(void);
};
/**
* Constructor allocate internal buffer.
* @param[in] rows: amount of matrix rows
* @param[in] cols: amount of matrix columns
*/
Mat(int rows, int cols);
/**
* Constructor use external buffer.
* @param[in] data: external buffer with row-major matrix data
* @param[in] rows: amount of matrix rows
* @param[in] cols: amount of matrix columns
*/
Mat(float *data, int rows, int cols);
/**
* Constructor
* @param[in] data: external buffer with row-major matrix data
* @param[in] rows: amount of matrix rows
* @param[in] cols: amount of matrix columns
* @param[in] stride: col stride
*/
Mat(float *data, int rows, int cols, int stride);
/**
* Allocate matrix with undefined size.
*/
Mat();
virtual ~Mat();
/**
* @brief Make copy of matrix.
*
* if src matrix is sub matrix, only the header is copied
* if src matrix is matrix, header and data are copied
*
* @param[in] src: source matrix
*/
Mat(const Mat &src);
/**
* @brief Create a subset of matrix as ROI (Region of Interest)
*
* @param[in] startRow: start row position of source matrix to get the subset matrix from
* @param[in] startCol: start col position of source matrix to get the subset matrix from
* @param[in] roiRows: size of row elements of source matrix to get the subset matrix from
* @param[in] roiCols: size of col elements of source matrix to get the subset matrix from
*
* @return
* - result matrix size roiRows x roiCols
*/
Mat getROI(int startRow, int startCol, int roiRows, int roiCols);
/**
* @brief Create a subset of matrix as ROI (Region of Interest)
*
* @param[in] startRow: start row position of source matrix to get the subset matrix from
* @param[in] startCol: start col position of source matrix to get the subset matrix from
* @param[in] roiRows: size of row elements of source matrix to get the subset matrix from
* @param[in] roiCols: size of col elements of source matrix to get the subset matrix from
* @param[in] stride: number of cols + padding between 2 rows
*
* @return
* - result matrix size roiRows x roiCols
*/
Mat getROI(int startRow, int startCol, int roiRows, int roiCols, int stride);
/**
* @brief Create a subset of matrix as ROI (Region of Interest)
*
* @param[in] rect: rectangular area of interest
*
* @return
* - result matrix size rect.rectRows x rect.rectCols
*/
Mat getROI(const Mat::Rect &rect);
/**
* Make copy of matrix.
* @param[in] src: source matrix
* @param[in] row_pos: start row position of destination matrix
* @param[in] col_pos: start col position of destination matrix
*/
void Copy(const Mat &src, int row_pos, int col_pos);
/**
* @brief copy header of matrix
*
* Make a shallow copy of matrix (no data copy)
* @param[in] src: source matrix
*/
void CopyHead(const Mat &src);
/**
* @brief print matrix header
*
* Print all information about matrix to the terminal
* @param[in] src: source matrix
*/
void PrintHead(void);
/**
* Make copy of matrix.
* @param[in] row_start: start row position of source matrix to copy
* @param[in] row_size: size of wor elements of source matrix to copy
* @param[in] col_start: start col position of source matrix to copy
* @param[in] col_size: size of wor elements of source matrix to copy
*
* @return
* - result matrix size row_size x col_size
*/
Mat Get(int row_start, int row_size, int col_start, int col_size);
/**
* Make copy of matrix.
* @param[in] rect: rectangular area of interest
* @return
* - result matrix size row_size x col_size
*/
Mat Get(const Mat::Rect &rect);
/**
* Copy operator
*
* @param[in] src: source matrix
*
* @return
* - matrix copy
*/
Mat &operator=(const Mat &src);
/**
* Access to the matrix elements.
* @param[in] row: row position
* @param[in] col: column position
*
* @return
* - element of matrix M[row][col]
*/
inline float &operator()(int row, int col)
{
return data[row * this->stride + col];
}
/**
* Access to the matrix elements.
* @param[in] row: row position
* @param[in] col: column position
*
* @return
* - element of matrix M[row][col]
*/
inline const float &operator()(int row, int col) const
{
return data[row * this->stride + col];
}
/**
* += operator
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] A: source matrix
*
* @return
* - result matrix: result += A
*/
Mat &operator+=(const Mat &A);
/**
* += operator
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] C: constant
*
* @return
* - result matrix: result += C
*/
Mat &operator+=(float C);
/**
* -= operator
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] A: source matrix
*
* @return
* - result matrix: result -= A
*/
Mat &operator-=(const Mat &A);
/**
* -= operator
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] C: constant
*
* @return
* - result matrix: result -= C
*/
Mat &operator-=(float C);
/**
* *= operator
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] A: source matrix
*
* @return
* - result matrix: result -= A
*/
Mat &operator*=(const Mat &A);
/**
* += with constant operator
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] C: constant value
*
* @return
* - result matrix: result *= C
*/
Mat &operator*=(float C);
/**
* /= with constant operator
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] C: constant value
*
* @return
* - result matrix: result /= C
*/
Mat &operator/=(float C);
/**
* /= operator
*
* @param[in] B: source matrix
*
* @return
* - result matrix: result[i,j] = result[i,j]/B[i,j]
*/
Mat &operator/=(const Mat &B);
/**
* ^= xor with constant operator
* The operator use DSP optimized implementation of multiplication.
* @param[in] C: constant value
*
* @return
* - result matrix: result ^= C
*/
Mat operator^(int C);
/**
* Swap two rows between each other.
* @param[in] row1: position of first row
* @param[in] row2: position of second row
*/
void swapRows(int row1, int row2);
/**
* Matrix transpose.
* Change rows and columns between each other.
*
* @return
* - transposed matrix
*/
Mat t();
/**
* Create identity matrix.
* Create a square matrix and fill diagonal with 1.
*
* @param[in] size: matrix size
*
* @return
* - matrix [N]x[N] with 1 in diagonal
*/
static Mat eye(int size);
/**
* Create matrix with all elements 1.
* Create a square matrix and fill all elements with 1.
*
* @param[in] size: matrix size
*
* @return
* - matrix [N]x[N] with 1 in all elements
*/
static Mat ones(int size);
/**
* Create matrix with all elements 1.
* Create a matrix and fill all elements with 1.
*
* @param[in] rows: matrix rows
* @param[in] cols: matrix cols
*
* @return
* - matrix [N]x[N] with 1 in all elements
*/
static Mat ones(int rows, int cols);
/**
* Return part of matrix from defined position (startRow, startCol) as a matrix[blockRows x blockCols].
*
* @param[in] startRow: start row position
* @param[in] startCol: start column position
* @param[in] blockRows: amount of rows in result matrix
* @param[in] blockCols: amount of columns in the result matrix
*
* @return
* - matrix [blockRows]x[blockCols]
*/
Mat block(int startRow, int startCol, int blockRows, int blockCols);
/**
* Normalizes the vector, i.e. divides it by its own norm.
* If it's matrix, calculate matrix norm
*
*/
void normalize(void);
/**
* Return norm of the vector.
* If it's matrix, calculate matrix norm
*
* @return
* - matrix norm
*/
float norm(void);
/**
* The method fill 0 to the matrix structure.
*
*/
void clear(void);
/**
* @brief Solve the matrix
*
* Solve matrix. Find roots for the matrix A*x = b
*
* @param[in] A: matrix [N]x[N] with input coefficients
* @param[in] b: vector [N]x[1] with result values
*
* @return
* - matrix [N]x[1] with roots
*/
static Mat solve(Mat A, Mat b);
/**
* @brief Band solve the matrix
*
* Solve band matrix. Find roots for the matrix A*x = b with bandwidth k.
*
* @param[in] A: matrix [N]x[N] with input coefficients
* @param[in] b: vector [N]x[1] with result values
* @param[in] k: upper bandwidth value
*
* @return
* - matrix [N]x[1] with roots
*/
static Mat bandSolve(Mat A, Mat b, int k);
/**
* @brief Solve the matrix
*
* Different way to solve the matrix. Find roots for the matrix A*x = y
*
* @param[in] A: matrix [N]x[N] with input coefficients
* @param[in] y: vector [N]x[1] with result values
*
* @return
* - matrix [N]x[1] with roots
*/
static Mat roots(Mat A, Mat y);
/**
* @brief Dotproduct of two vectors
*
* The method returns dotproduct of two vectors
*
* @param[in] A: Input vector A Nx1
* @param[in] B: Input vector B Nx1
*
* @return
* - dotproduct value
*/
static float dotProduct(Mat A, Mat B);
/**
* @brief Augmented matrices
*
* Augmented matrices
*
* @param[in] A: Input vector A MxN
* @param[in] B: Input vector B MxK
*
* @return
* - Augmented matrix Mx(N+K)
*/
static Mat augment(Mat A, Mat B);
/**
* @brief Gaussian Elimination
*
* Gaussian Elimination of matrix
*
* @return
* - result matrix
*/
Mat gaussianEliminate();
/**
* Row reduction for Gaussian elimination
*
* @return
* - result matrix
*/
Mat rowReduceFromGaussian();
/**
* Find the inverse matrix
*
* @return
* - inverse matrix
*/
Mat inverse();
/**
* Find pseudo inverse matrix
*
* @return
* - inverse matrix
*/
Mat pinv();
/**
* Find determinant
* @param[in] n: element number in first row
*
* @return
* - determinant value
*/
float det(int n);
private:
Mat cofactor(int row, int col, int n);
Mat adjoint();
void allocate(); // Allocate buffer
Mat expHelper(const Mat &m, int num);
};
/**
* Print matrix to the standard iostream.
* @param[in] os: output stream
* @param[in] m: matrix to print
*
* @return
* - output stream
*/
std::ostream &operator<<(std::ostream &os, const Mat &m);
/**
* Print rectangular ROI to the standard iostream.
* @param[in] os: output stream
* @param[in] rect: ROI
*
* @return
* - output stream
*/
std::ostream &operator<<(std::ostream &os, const Mat::Rect &rect);
/**
* Fill the matrix from iostream.
* @param[in] is: input stream
* @param[in] m: matrix to fill
*
* @return
* - input stream
*/
std::istream &operator>>(std::istream &is, Mat &m);
/**
* + operator, sum of two matrices
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] A: Input matrix A
* @param[in] B: Input matrix B
*
* @return
* - result matrix A+B
*/
Mat operator+(const Mat &A, const Mat &B);
/**
* + operator, sum of matrix with constant
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] A: Input matrix A
* @param[in] C: Input constant
*
* @return
* - result matrix A+C
*/
Mat operator+(const Mat &A, float C);
/**
* - operator, subtraction of two matrices
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] A: Input matrix A
* @param[in] B: Input matrix B
*
* @return
* - result matrix A-B
*/
Mat operator-(const Mat &A, const Mat &B);
/**
* - operator, sum of matrix with constant
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] A: Input matrix A
* @param[in] C: Input constant
*
* @return
* - result matrix A+C
*/
Mat operator-(const Mat &A, float C);
/**
* * operator, multiplication of two matrices.
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] A: Input matrix A
* @param[in] B: Input matrix B
*
* @return
* - result matrix A*B
*/
Mat operator*(const Mat &A, const Mat &B);
/**
* * operator, multiplication of matrix with constant
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] A: Input matrix A
* @param[in] C: floating point value
*
* @return
* - result matrix A*B
*/
Mat operator*(const Mat &A, float C);
/**
* * operator, multiplication of matrix with constant
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] C: floating point value
* @param[in] A: Input matrix A
*
* @return
* - result matrix A*B
*/
Mat operator*(float C, const Mat &A);
/**
* / operator, divide of matrix by constant
* The operator use DSP optimized implementation of multiplication.
*
* @param[in] A: Input matrix A
* @param[in] C: floating point value
*
* @return
* - result matrix A*B
*/
Mat operator/(const Mat &A, float C);
/**
* / operator, divide matrix A by matrix B
*
* @param[in] A: Input matrix A
* @param[in] B: Input matrix B
*
* @return
* - result matrix C, where C[i,j] = A[i,j]/B[i,j]
*/
Mat operator/(const Mat &A, const Mat &B);
/**
* == operator, compare two matrices
*
* @param[in] A: Input matrix A
* @param[in] B: Input matrix B
*
* @return
* - true if matrices are the same
* - false if matrices are different
*/
bool operator==(const Mat &A, const Mat &B);
}
#endif //_dspm_mat_h_